Средства разработки приложений



              

Представление чисел


Здесь ключевым вопросом является выбор основания числа. Практически все ранние компьютеры характеризовались основанием 10 - представление на основе десятичных цифр, как каждого из нас учат в школе.

Однако двоичное представление с использованием двоичных цифр является, очевидно, более экономичным. Для представления целого числа n требуется log10(n) десятичных цифр, но всего лишь log2(n) двоичных цифр (бит). Поскольку для представления десятичной цифры требуется четыре бита, для десятичного представления требуется примерно на 20% больше памяти, чем для двоичного, что показывает очевидное преимущество двоичной формы. Тем не менее, разработчики долгое время сохраняли десятичное представление, и оно присутствует и сегодня в форме библиотечного модуля. Это связано с тем, что разработчики продолжали верить в необходимость точности всех вычислений.

Однако ошибки возникают при округлении, например, после выполнения операции деления. Эффекты округления могут различаться в зависимости от способа представления чисел, и двоичный компьютер может выдать результаты, отличающиеся от результатов десятичного компьютера. Поскольку финансовые транзакции - где более всего существенна точность - традиционно выполнялись вручную с использованием десятичной арифметики, разработчики полагали, что компьютеры должны производить во всех случаях те же результаты - и, следовательно, фиксировать те же ошибки.

Двоичная форма в общем случае приводит к более точные результатам, но десятичная форма остается предпочтительным вариантом в финансовых приложениях, поскольку десятичный результат в случае потребности легко проверить вручную.

Эта понятная идея, очевидно, являлась консервативной. Заметим, что до пришествия в 1964 г. IBM System/360, в которой поддерживалась как двоичная, так и десятичная арифметика, производители крупных компьютеров предлагали две линейки продуктов: двоичные компьютеры для научных потребителей и десятичные компьютеры для коммерческих потребителей - дорогостоящий подход.

В ранних компьютерах целые числа представлялись своим модулем и отдельным знаковым битом.


Содержание  Назад  Вперед